Progression in Reasoning

- Step one: Describing: simply tells what they did.
- Step two: Explaining: offers some reasons for what they did. These may or may not be correct. The argument may yet not hang together coherently. This is
 the beginning of inductive reasoning.
- Step three: Proving: a watertight argument that is mathematically sound, often based on generalisations and underlying structure. This is also called deductive reasoning.

- Step four: Convincing: confident that their chain of reasoning is right and may use words such as, 'I reckon' or 'without doubt'. The underlying mathematical argument may or may not be accurate yet is likely to
 have more coherence and completeness than the explaining stage. This is called inductive reasoning.
- Step five: Justifying: a correct logical argument that has a complete chain of reasoning to it and uses words such as 'because', 'therefore', 'and so', 'that leads to'

Progression in Questioning

	How did you group these? What's the same? What's different? Can you group these in some way? Can you see a pattern? What do you notice? How do you know that is the missing number	method to solve a different problem?
	What have you found out? What can we use to help us find the answer? How do you know the answer is correct? How can you show me the answer is correct? Can you show me how you got that answer? Can you show me if it is true or false?	What have you discovered? Can you group these in some way? How can you use this equipment to check this answer? What do you know about counting that can help you with proving this answer is correct? How can this pattern help you find an answer? What have you discovered? How did you find that out? Why do you think that? What made you decide to do it that way?
	Spot the mistake I think this is false/True because..... Tell me what is wrong with ... Is it ever false that ...? (always true that ...?) Are everybody's answers the same? Why/ why not? Do you agree or disagree?	What made you decide to do that? Why did you do it like that? Why have we got two different answers? Who is correct? Have we found all the possibilities? Who has a different solution? Are everybody's results the same? Why/ why not? Do you agree or disagree, why?

	Heavily scaffolded Is there a quicker way? How do you know you have found the only answer?	Why did you use that method? Can you explain this in a different way? How would the method change if...? How many more solutions can you find? What would happen if we answer? more than one ange....? Can you find a different way to reach your answer? Could you choose a different method to solve this question? Do you think we have found the best solution? found out all the possible answers?

St George's approach to Mathematical Problem solving.

Our approach is based on a number of recommendations made in the guidance report published by the EEF.
 well-rehearsed and readily available method to solve a

IMPROVING MATHEMATICS IN KEY STAGES TWO AND THREE problem they need to draw on problem solving strategies to make sense of the unfamiliar situation

- Select problemsolving tasks for which pupils do not have ready-made solutions
- Teach them
to use and compare different approaches
- Show them how to interrogate and use their existing knowledge to solve problems
- Use worked examples to enable them to analyse the use of different strategies
- Require pupils to monitor, reflect on, and communicate their problem solving

- Modelling by the teacher is a cornerstone of effective teaching; revealing the thought processes of an expert learner helps to develop pupils' metacognitive skills.
- Teachers should verbalise their metacognitive thinking ('What do I know about problems like this? What ways of solving them have I used before?') as they approach and work through a task.
- Scaffolded tasks, like worked examples, allow pupils to develop their metacognitive and cognitive skills without placing too many demands on their mental resources.

So at St Georges we have come up with an approach based on the 7 step model for teaching metacognition strategies below:

1. Activate prior knowledge-Build task
2. Share problem but withhold information and use simple numbers and discuss understanding of problem.
3. Share Worked example.
4. Model by thinking out loud- use visual aids and manipulatives to support.
5. Introduce a similar problem but a different context to complete independently but with support and scaffolds and extensions for those rapid graspers.
6. Check understanding and reflect- explain and evaluate.

An example of exploring and understanding the problem.

An example of materials used in the 6 step approach.

Task 1: Making 3-digit numbers
340
100$10 \quad 10$
$10 \quad 10$

340

100 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | 10 | 10 | 10 | 10 | | |

340

(100) | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |

340	10	10	10	10	10				
10	10	10	10	10	10	10	10	10	
10	10	10	10	10					

